Abstract
Vertebrate evolution was accompanied by two rounds of whole-genome duplication followed by functional divergence in terms of regulatory circuits and gene expression patterns. As a basal and slow-evolving chordate species, amphioxus is an ideal paradigm for exploring the origin and evolution of vertebrates. Single-cell sequencing has been widely used to construct the developmental cell atlas of several representative species of vertebrates (human, mouse, zebrafish, and frog) and tunicates (sea squirts). Here, we perform single-nucleus RNA sequencing (snRNA-seq) and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) for different stages of amphioxus (covering embryogenesis and adult tissues). With the datasets generated, we constructed a developmental tree for amphioxus cell fate commitment and lineage specification and characterize the underlying key regulators and genetic regulatory networks. The data are publicly available on the online platform AmphioxusAtlas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.