Abstract
In the literature of operations management, the reliability of multistage manufacturing systems has been always modeled with uncorrelated failure processes where the reliability of each machine is assumed to be independent of any failure in the other machines. However, in real-life, machines may be subject to complex correlated failures such as increased degradation and tool wear caused by defective parts produced in preceding machines. Ignoring the correlation effect when modeling the reliability of multistage systems generally results in inaccurate estimation of the overall system reliability and inefficient operations policy accordingly. In this paper, we deal with the problem of integrated production, quality and maintenance control of production lines where machines are subject to quality and reliability operation-dependent degradation. Also, machines' reliability is correlated with the level of incoming product quality. For illustration, we study in this paper a two-machine line model. We propose a combined mathematics and simulation-based modeling framework to jointly optimize the production, quality and maintenance control settings. The objective is to minimize the total cost incurred under a constraint on the outgoing quality. Numerical examples are given to show the effectiveness of the resolution approach and to study important aspects in multistage systems such as the allocation of inspection and maintenance efforts, the Quality-Reliability chain and the interdependence between production, quality and maintenance control settings. The results obtained demonstrate that failure correlation has a significant impact on the optimal control settings and that maintenance and quality control activities in preceding stages can play an important role in the reliability improvement of the subsequent machines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.