Abstract

Lithium-ion batteries are widely used in power grids as a common form of energy storage in power stations. The state of charge (SOC) and state of health (SOH) reflect the capacity and lifetime variation in the Li-ion batteries, and they are important state parameters of Li-ion batteries. Therefore, the establishment of accurate SOC and SOH prediction models is an essential prerequisite for the correct assessment of the status of lithium batteries, the improvement of the operational accuracy of energy-storage stations, and the development of maintenance plans for energy-storage stations. This paper first analyzes the correlation between SOC and SOH, and then proposes a joint SOC and SOH prediction model using the particle swarm optimization (PSO) algorithm to optimize the extreme gradient boosting algorithm (XGBoost), which takes into account the dynamic correlation between SOC and SOH dynamics, thus enabling more accurate SOC and SOH prediction. Finally, the prediction model is validated using the Oxford battery aging dataset. The correlation between SOC and SOH is verified by comparing the joint prediction results with the SOC individual prediction results. Then, the prediction results of the PSO-XGBoost model, the traditional XGBoost model, and the long short-term memory neural network are compared to verify the effectiveness and accuracy of the PSO-XGBoost model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.