Abstract

Fifth generation (5G) mobile communication networks have the ability to deal with the growing need for increased data rates, decreased network latencies, low power consumption, seamless coverage, and massive connectivity while sustaining the high Quality of Service (QoS) at the subscriber’s end. The key drivers of beyond 5G (B5G) are anticipated to be the convergence of all the features of 5G and B5G becomes more heterogeneous with the different small cell access points and massive multiple-input multiple-output (massive MIMO). In this work, the macro base station enabled with massive MIMO technology and the small cell access points possessing the full-duplex communication ability in a heterogeneous network (HetNet) is investigated. The prime objective is to optimize the power utilization by employing scaled beamforming and power allocation techniques with reduced complexity while sustaining the QoS in a full-duplex massive MIMO enabled HetNet with small cells. The joint power optimization and scaled beamforming algorithm is used to maximize the sum rates with reduced power consumption when compared to multi-flow zero-forcing (MZF) beamforming. The complexity analysis is also carried out by optimizing the number of transmission antennas and users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.