Abstract

To guard against process variability in advanced semiconductor nodes, especially for high-density memories, designers resort to overdesigning policies resulting in increased power consumption. A promising approach to save power is to utilize Voltage over-Scaling (VoS). However VoS results into unreliable buffering memories where a predictable statistically amount of errors are introduced to memories. The goal is to trade off channel dependent SNR slack versus hardware induced errors, to achieve predetermined quality metrics, at reduced power consumption. By design, modern communication systems attempt to minimize channel-dependent SNR slack via adaptive modulation and coding (AMC) schemes, thus reducing the gains of on-chip power management. This paper investigates the interaction between on-chip power management via VoS on embedded memories versus network based AMC techniques. A novel mathematical approach that analytically describes the system packet error rate (PER) performance under the VoS induced noise is presented. Based on this model, different AMC and power management algorithms are presented that utilize the received SNR estimates to find the best AMC mode and memory voltage that achieves performance goals at reduced power consumption. Simulation results show that the proposed algorithms can achieve up to 58% energy efficiency for the memory-subsystems compared to conventional AMC algorithm with perfect memories. © 2014 IEEE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.