Abstract

To enhance human mobility, training interventions and assistive lower limb wearable robotic designs must draw insights from movement tasks from daily life. This study aimed to analyze joint peak power, limb and joint work, and muscle activity of the lower limb during a series of stair ambulation conditions. We recruited 12 subjects (25.4±4.5 yrs, 180.1±4.6 cm, 74.6±7.9 kg) and studied steady gait and gait transitions between level walking, stair ascent and stair descent for three staircase inclinations (low 19°, normal 30.4°, high 39.6°). Our analysis revealed that joint peak power, limb and joint work, and muscle activity increased significantly compared to level walking and with increasing stair inclination for most of the conditions analyzed. Transition strides had no increased requirements compared to the maxima found for steady level walking and steady stair ambulation. Stair ascent required increased lower limb joint positive peak power and work, while stair descent required increased lower limb joint negative peak power and work compared to level walking. The most challenging condition was high stair inclination, which required approximately thirteen times the total lower limb joint positive and negative net work during ascent and descent, respectively. These findings suggest that training interventions and lower limb wearable robotic designs must consider the major increases in lower limb joint and muscle effort during stair ambulation, with specific attention to the demands of ascent and descent, to effectively improve human mobility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call