Abstract
Cooperative localization can enhance the accuracy of wireless network localization by incorporating range information among agent nodes in addition to those between agents and anchors. In this paper, we investigate the optimal allocation of the restricted resources, namely, power and bandwidth, to different nodes. We formulate the optimization problems for both synchronous networks and asynchronous networks, where one way and round trip measurements are applied for range estimation, respectively. Since the optimization problems are nonconvex, we develop an iterative linearization-based technique, and show by comparison with brute-force search that it provides near-optimal performance in the investigated cases. We also show that especially in the case of inefficient anchor placement and/or severe shadowing, cooperation among agents is important and more resources should be allocated to the agents correspondingly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.