Abstract

Contention losses which usually do not indicate congestion is a major issue that hinders the deployment of optical burst switching (OBS) networks. Development of efficient path and wavelength selection algorithms is crucial to minimize the burst loss probability (BLP) in OBS networks. In this paper, we handle path selection and wavelength selection in a joint fashion. We formulate the problem of selecting a pair of path and wavelength jointly as a multi-armed bandit problem (MABP) and discuss the difficulties in solving MABP directly. We then rewrite the Q-learning formalism to solve the MABP without explicit model in an online fashion and propose an algorithm to solve the problem near-optimally. The proposed algorithm selects a pair of path and wavelength at each ingress node to minimize the BLP on the long run. Simulation results demonstrate the effectiveness of our algorithm in minimizing the BLP with better link utilization compared to the other proposals in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.