Abstract
Most action unit (AU) detection methods use one-versus-all classifiers without considering dependences between features or AUs. In this paper, we introduce a joint patch and multi-label learning (JPML) framework that models the structured joint dependence behind features, AUs, and their interplay. In particular, JPML leverages group sparsity to identify important facial patches, and learns a multi-label classifier constrained by the likelihood of co-occurring AUs. To describe such likelihood, we derive two AU relations, positive correlation and negative competition, by statistically analyzing more than 350,000 video frames annotated with multiple AUs. To the best of our knowledge, this is the first work that jointly addresses patch learning and multi-label learning for AU detection. In addition, we show that JPML can be extended to recognize holistic expressions by learning common and specific patches, which afford a more compact representation than the standard expression recognition methods. We evaluate JPML on three benchmark datasets CK+, BP4D, and GFT, using within-and cross-dataset scenarios. In four of five experiments, JPML achieved the highest averaged F1 scores in comparison with baseline and alternative methods that use either patch learning or multi-label learning alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.