Abstract

SummaryIn this paper, the problem of hybrid overlay and underlay spectrum access is investigated for OFDM‐based cognitive radio (CR) systems. Both the metrics for system (e.g. capacity) and users (e.g. fairness) are integrated into the unified framework of weighted‐capacity maximization with the interference constraint in CR systems. For easing the procedure of resource allocation, two criteria, respectively, for subcarrier assignment and power allocation are theoretically derived based on the Karush–Kuhn–Tucker conditions. Under the guidance of the two criteria, max‐capacity subcarrier assignment and optimal power allocation are proposed to flexibly distribute spectrum resources to secondary users. In order to reduce the computational complexity further, a suboptimal power allocation algorithm, referred to as cap‐limited waterfilling, is also presented by decomposing the interference constraint. Simulation results show that the capacity and fairness performance of the proposed algorithms is considerably better than the conventional ones in references. The proposed suboptimal algorithm with substantially lower complexity approaches to optimal power allocation in the vicinity of only 1% performance gap. Meanwhile, joint access model is greatly beneficial to spectrum efficiency enhancement in CR systems. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call