Abstract

In this paper, we discuss the joint improvement of the energy efficiency (EE) and the spectrum efficiency (SE) in OFDM-based cognitive radio (CR) networks. A multi-objective resource allocation task is formulated to optimize the EE and the SE of the CR system simultaneously with the consideration of the mutual interference and the spectrum sensing errors. We first exploit the EE–SE relations and demonstrate that the EE is a quasiconcave function of the SE, based on which the Pareto optimal set of the multi-objective optimization problem is characterized. To find a unique globally optimal solution, we propose a unified EE–SE tradeoff metric to transform the multi-objective optimization problem into a single-objective one which has a D.C. (difference of two convex functions/sets) structure and yields a standard convex optimization problem. We derive a fast method to speed up the time-consuming computation by exploiting the structure of the convex problem. Simulation results validate the effectiveness and efficiency of the proposed algorithms, which can produce the unique globally optimal solution of the original multi-objective optimization problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.