Abstract
It is a common practice for transit lines with fluctuating passenger demands to use demand-driven bus scheduling to reduce passenger waiting time and avoid bus overcrowding. However, current literature on the demand-driven bus scheduling generally assumes fixed bus capacity and exclusively optimizes bus dispatch headways. With the advent of connected and autonomous vehicle technology and the introduction of autonomous minibus/shuttle, the joint design of bus capacity and dispatch headway holds promises to further improving the system efficiency while reducing operating and passenger costs. This paper formulates this problem as an integer nonlinear programming model for transit systems operating with mixed human-driven and autonomous buses. In such mixed operating environment, the model simultaneously considers: (1) dynamic capacity design of autonomous bus, i.e., autonomous buses with varying capacity can be obtained by assembling and/or dissembling multiple autonomous minibuses; (2) trajectory control of autonomous bus, i.e., autonomous bus can dynamically adjust its running time as a function of its forward and backward headways; and (3) stop-level passenger boarding and alighting behavior. The objective of the model is designed to balance the trade-off between the operating costs of dispatching different types of bus and the costs of increased passenger waiting time due to inadequate bus dispatching. The model is solved using a dynamic programming approach. We show that the proposed model is effective in reducing passenger waiting time and total operating cost. Sensitivity analysis is further conducted to explore the impact of miscellaneous factors on optimal dispatching decisions, such as penetration rate of autonomous bus, bus running time variation, and passenger demand level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part C: Emerging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.