Abstract

With the dramatic increase in the number of emerging Internet services, the Fog-Radio Access Network (F-RAN) has recently emerged as a promising paradigm to enhance high-load task processing capabilities for mobile devices, such as the Internet of things (IoT) and mobile terminals. Hence, it becomes a challenge for the F-RAN to reduce the offloading cost by designing an effective offloading strategy and rational planning of limited network resources to improve the quality of experience (QoE). This article investigates the F-RAN with a binary offload policy. It proposes an intelligent algorithm capable of optimally adapting to task offload policy, fog computing resource allocation, and offload channel resource allocation. To evaluate the offloading strategy intuitively, we design a system utility metric defined as a delay-energy weighted sum. The joint optimization problem is converted into a convex problem based on this metric, i.e., a mixed integer nonlinear programming (MINLP) problem. A novel algorithm based on improved double-deep Q neural networks is DDQN, which is proposed to address this problem. Furthermore, an action space mapping method in the DDQN framework is presented to obtain offloading decisions. Extensive experimental data indicate that the proposed DDQN algorithm can effectively reduce the offloading cost and is adaptable to different offloading scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.