Abstract
To address the issues of communication failure and inefficiency in clustered drone relay communication due to external malicious interference, this paper proposes a joint optimization method for relay communication rates under interference conditions for clustered drones. This method employs the following two-step processing framework: Firstly, the Discrete Soft Actor-Critic (DSAC) algorithm is used to train the relay drones for dynamic channel selection, effectively avoiding various types of interference. Simultaneously, the Bayesian optimization algorithm is applied to optimize the hyperparameters of the DSAC algorithm, further enhancing its performance. Subsequently, the modulation order, transmission power, trajectory of the relay drones, and power allocation factors of the clustered drones are jointly optimized. This complex problem is transformed into a convex subproblem for determining a solution, aiming to maximize the communication rate of the clustered drones. The simulation’s results demonstrate that the proposed algorithm exhibits excellent performances in terms of anti-interference capability, solution convergence, and stability. It effectively improves the mission efficiency of clustered drones under interference conditions and enhances their adaptability to dynamic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.