Abstract

Migrating computational intensive tasks from mobile devices to more resourceful cloud servers is a promising technique to increase the computational capacity of mobile devices while saving their battery energy. In this paper, we consider a MIMO multicell system where multiple mobile users (MUs) ask for computation offloading to a common cloud server. We formulate the offloading problem as the joint optimization of the radio resources-the transmit precoding matrices of the MUs-and the computational resources-the CPU cycles/second assigned by the cloud to each MU-in order to minimize the overall users' energy consumption, while meeting latency constraints. The resulting optimization problem is nonconvex (in the objective function and constraints). Nevertheless, in the single-user case, we are able to express the global optimal solution in closed form. In the more challenging multiuser scenario, we propose an iterative algorithm, based on a novel successive convex approximation technique, converging to a local optimal solution of the original nonconvex problem. Then, we reformulate the algorithm in a distributed and parallel implementation across the radio access points, requiring only a limited coordination/signaling with the cloud. Numerical results show that the proposed schemes outperform disjoint optimization algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call