Abstract

Unmanned Aerial Vehicles (UAVs) have increasingly played a significant role in transportation activities, while the security challenges posed by UAVs are becoming more prominent. This paper explores a joint optimization problem involving loading, mission abort, and rescue site selection policies to meet random cargo demand while minimizing the total cost associated with cargo damage and UAV failures. When the condition of the UAV deteriorates beyond a certain threshold, the transportation mission can be aborted, thereby reducing the risk of failure. Subsequently, the UAV is required to proceed to the nearest rescue sites for assistance. The duration of the rescue depends on the distance between the rescue site and the UAV's position at the time of mission abort. Given that the probability of UAV failure during the rescue procedure increases with the rescue duration, the strategic selection of rescue sites becomes crucial in enhancing UAV survivability. Optimization models are subsequently developed to determine the optimal loading level, abort threshold, and distribution of rescue sites, with the objectives of maximizing system survivability and minimizing expected costs. Finally, a case study is conducted to illustrate the substantial impact of the proposed policies on enhancing UAV survivability and reducing operational costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call