Abstract

In this paper, we study the handover (HO), and power allocation problem in a two-tier heterogeneous network (HetNet), which consists of a macro base station, and some millimeter-wave (mmWave) small base stations. We establish an HO management, and power allocation scheme to maximize the overall throughput while reducing the HO frequency. In particular, considering the interrelationship among decisions made by different user equipments (UEs), we first model the HO, and power allocation problem as a fully cooperative multi-agent task, in which all agents, i.e., UEs, have the same target. Then, to solve the multi-agent task, and get decentralized policies for each UE, we develop a multi-agent reinforcement learning (MARL) algorithm based on the proximal policy optimization (PPO) method, by introducing the centralized training with decentralized execution framework. That is, we use global information to train policies for each UE, and after the training is finished, each UE obtains a decentralized policy, which can be implemented only based on each UE's local observation. Specially, we introduce the counterfactual baseline to address the credit assignment problem in centralized learning. Due to the centralized training, the decentralized polices learned by multi-agent PPO (MAPPO) can work more cooperatively. Finally, the simulation results demonstrate that our method can achieve better performance comparing with other existing works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.