Abstract

In the mobile cloud computing (MCC), although offloading requests to the distant central cloud or nearby cloudlet can reduce energy consumption at the mobile devices (MDs), it may also incur a large execution delay including transmission time from the MDs to the servers and waiting time at the servers. Therefore, how to balance the energy consumption and delay performance is of great research importance. In this paper, we bring a thorough study on the energy consumption and execution delay of offloading process in a cloudlet-assisted MCC. Specifically, heterogeneity of request executions are explicitly considered. When there is a small cell base station (SBS) available, the MDs can connect with cloudlet via the SBS and if only a macro cell base station is available, the MD can connect with the central cloud through it. We derive the analytic results of the energy consumption and execution delay performance with the assumption of three different queue models at the MD, cloudlet and central cloud. Based on the theoretical analysis, the multi-objective optimization problems are formulated with the joint objectives to minimize the energy consumption and delay by finding the optimal offloading probability. The simulation results demonstrate the effectiveness of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.