Abstract

Abstract With the advent of one-to-one marketing media, e.g. targeted direct mail or internet marketing, the opportunities to develop targeted marketing (customer relationship management) campaigns are enhanced in such a way that it is now both organizationally and economically feasible to profitably support a substantially larger number of marketing segments. However, the problem of what segments to distinguish, and what actions to take towards the different segments increases substantially in such an environment. A systematic analytic procedure optimizing both steps would be very welcome. In this study, we present a joint optimization approach addressing two issues: (1) the segmentation of customers into homogeneous groups of customers, (2) determining the optimal policy (i.e. what action to take from a set of available actions) towards each segment. We implement this joint optimization framework in a direct-mail setting for a charitable organization. Many previous studies in this area highlighted the importance of the following variables: R(ecency), F(requency), and M(onetary value). We use these variables to segment customers. In a second step, we determine which marketing policy is optimal using markov decision processes, following similar previous applications. The attractiveness of this stochastic dynamic programming procedure is based on the long-run maximization of expected average profit. Our contribution lies in the combination of both steps into one optimization framework to obtain an optimal allocation of marketing expenditures. Moreover, we control segment stability and policy performance by a bootstrap procedure. Our framework is illustrated by a real-life application. The results show that the proposed model outperforms a CHAID segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.