Abstract

In the semantic multinomial framework patches and images are modeled as points in a semantic probability simplex. Patch theme models are learned resorting to weak supervision via image labels, which leads the problem of scene categories co-occurring in this semantic space. Fortunately, each category has its own co-occurrence patterns that are consistent across the images in that category. Thus, discovering and modeling these patterns is critical to improve the recognition performance in this representation. In this paper, we observe that not only global co-occurrences at the image-level are important, but also different regions have different category co-occurrence patterns. We exploit local contextual relations to address the problem of discovering consistent co-occurrence patterns and removing noisy ones. Our hypothesis is that a less noisy semantic representation, would greatly help the classifier to model consistent co-occurrences and discriminate better between scene categories. An important advantage of modeling features in a semantic space is that this space is feature independent. Thus, we can combine multiple features and spatial neighbors in the same common space, and formulate the problem as minimizing a context-dependent energy. Experimental results show that exploiting different types of contextual relations consistently improves the recognition accuracy. In particular, larger datasets benefit more from the proposed method, leading to very competitive performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.