Abstract

BackgroundBecause of the specific biomechanical environment of the patellofemoral joint, chondral disorders, including chondromalacia, often are observed in this articulation. Chondromalacia via pathologic changes in cartilage may lead to qualitative impairment of knee joint motion. ObjectiveTo determine the patellofemoral joint motion quality in particular chondromalacia stages and to compare with controls. DesignRetrospective, comparative study. SettingVoivodship hospitals, university biomechanical laboratory. PatientsA total of 89 knees with chondromalacia (25 with stage I; 30 with stage II and 34 with stage III) from 50 patients and 64 control healthy knees (from 32 individuals). MethodsVibroacoustic signal pattern analysis of joint motion quality. Main Outcome MeasurementsFor all knees vibroacoustic signals were recorded. Each obtained signal was described by variation of mean square, mean range (R4), and power spectral density for frequency of 50-250 Hz (P1) and 250-450 Hz (P2) parameters. ResultsDifferences between healthy controls and all chondromalacic knees as well as chondromalacia patellae groups were observed as an increase of analyzed parameters (P < .001) with only one exception. No statistically significant difference between control group and stage I of chondromalacia patellae was found. All chondromalacia groups were differentiated by the use of all analyzed parameters (P < .01), whose values correspond to the progress of chondromalacia. ConclusionsChondromalacia generates abnormal vibroacoustic signals, and there seems to be a relationship between the level of signal amplitude as well as frequency and cartilage destruction from the superficial layer to the subchondral bone. Level of EvidenceIV

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.