Abstract
Individuals can coordinate small kinematic changes at several degrees of freedom simultaneously in the presence of fatigue, leaving it unclear how overall biomechanical demands at each joint are altered. The purpose of this study was to evaluate trade-offs in joint moments between the trunk, shoulder, and elbow during repetitive upper extremity work. Participants performed four simulated workplace tasks cyclically until meeting fatigue termination criteria. Emergent fatigue-induced adaptations to repetitive work resulted in task-dependent trade-offs in joint moments. In general, reduced shoulder moments were compensated for by increased elbow and trunk joint moment contributions. Although mean joint moment changes were modest (range: 1–3 Nm) across participants, a wide distribution of responses was observed, with standard deviations exceeding 10 Nm. Re-distributing biomechanical demands across joints may alleviate constant tissue loads and facilitate continued task performance with fatigue but may be at the expense of increasing demands at adjacent joints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.