Abstract

Joint models for longitudinal biomarkers and time-to-event data are widely used in longitudinal studies. Many joint modeling approaches have been proposed to handle different types of longitudinal biomarkers and survival outcomes. However, most existing joint modeling methods cannot deal with a large number of longitudinal biomarkers simultaneously, such as the longitudinally collected gene expression profiles. In this article, we propose a new joint modeling method under the Bayesian framework, which is able to analyze longitudinal biomarkers of high dimension. Specifically, we assume that only a few unobserved latent variables are related to the survival outcome and the latent variables are inferred using a factor analysis model, which greatly reduces the dimensionality of the biomarkers and also accounts for the high correlations among the biomarkers. Through extensive simulation studies, we show that our proposed method has improved prediction accuracy over other joint modeling methods. We illustrate the usefulness of our method on a dataset of idiopathic pulmonary fibrosis patients in which we are interested in predicting the patients' time-to-death using their gene expression profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.