Abstract
AbstractIn many clinical trials both repeated measures data and event history data are simultaneously observed from the same subject. These two types of responses are usually correlated, because they are from the same subject. In this article, we propose a joint model for the combined analysis of repeated measures data and event history data in the framework of hierarchical generalized linear models. The correlation between repeated measures and event time is modelled by introducing a shared random effect. The model parameters are estimated using the hierarchical‐likelihood approach. The proposed model is illustrated using a real data set for the renal transplant patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.