Abstract
ABSTRACT Joint modelling of longitudinal and time-to-event data is usually described by a joint model which uses shared or correlated latent effects to capture associations between the two processes. Under this framework, the joint distribution of the two processes can be derived straightforwardly by assuming conditional independence given the random effects. Alternative approaches to induce interdependency into sub-models have also been considered in the literature and one such approach is using copulas to introduce non-linear correlation between the marginal distributions of the longitudinal and time-to-event processes. The multivariate Gaussian copula joint model has been proposed in the literature to fit joint data by applying a Monte Carlo expectation-maximisation algorithm. In this paper, we propose an exact likelihood estimation approach to replace the more computationally expensive Monte Carlo expectation-maximisation algorithm and we consider results based on using both the multivariate Gaussian and t copula functions. We also provide a straightforward way to compute dynamic predictions of survival probabilities, showing that our proposed model is comparable in prediction performance to the shared random effects joint model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.