Abstract

Nuclear fuel material is an example of a sintered, porous ceramic material. We formulate a two-dimensional model which couples three physical mechanisms in the material: (scalar) damage accumulation by thermal creep and radiation effects, porosity changes due to the damage, and the time-dependent diffusion of (radiation-induced) gases in the pore system thus created. The most important effect in the dynamics arises from the process where the pore system is swept through the percolation transition. The main conclusions that can be drawn concern the fractional gas release and its dependence on the three effects present in the damage dynamics: creep, radiation-induced bubble formation, and recovery due to bubble closure. In the main, the model reproduces the experimentally observed quick gas release phenomenon qualitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.