Abstract

BackgroundReinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in relating parameters of reinforcement learning models to neural measures, psychological variables or experimental manipulations. We demonstrate that parameter identification is difficult because a range of parameter values provide approximately equal quality fits to data. This identification problem has a large impact on power: we show that a researcher who wants to detect a medium sized correlation (r = .3) with 80% power between a variable and learning rate must collect 60% more subjects than specified by a typical power analysis in order to account for the noise introduced by model fitting. New methodWe derive a Bayesian optimal model fitting technique that takes advantage of information contained in choices and reaction times to constrain parameter estimates. ResultsWe show using simulation and empirical data that this method substantially improves the ability to recover learning rates. Comparison with existing methodsWe compare this method against the use of Bayesian priors. We show in simulations that the combined use of Bayesian priors and reaction times confers the highest parameter identifiability. However, in real data where the priors may have been misspecified, the use of Bayesian priors interferes with the ability of reaction time data to improve parameter identifiability. ConclusionsWe present a simple technique that takes advantage of readily available data to substantially improve the quality of inferences that can be drawn from parameters of reinforcement learning models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.