Abstract

It is very common in AIDS studies that response variable (e.g., HIV viral load) may be subject to censoring due to detection limits while covariates (e.g., CD4 cell count) may be measured with error. Failure to take censoring in response variable and measurement errors in covariates into account may introduce substantial bias in estimation and thus lead to unreliable inference. Moreover, with non-normal and/or heteroskedastic data, traditional mean regression models are not robust to tail reactions. In this case, one may find it attractive to estimate extreme causal relationship of covariates to a dependent variable, which can be suitably studied in quantile regression framework. In this paper, we consider joint inference of mixed-effects quantile regression model with right-censored responses and errors in covariates. The inverse censoring probability weighted method and the orthogonal regression method are combined to reduce the biases of estimation caused by censored data and measurement errors. Under some regularity conditions, the consistence and asymptotic normality of estimators are derived. Finally, some simulation studies are implemented and a HIV/AIDS clinical data set is analyzed to to illustrate the proposed procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.