Abstract

Employing correlation among images for improved reconstruction in compressive sensing is a conceptually attractive idea, although developing efficient modeling strategies and reconstruction algorithms are often the key to achieve any potential benefit. This paper presents a novel modeling strategy and an efficient reconstruction algorithm for processing a set of correlated images, jointly taking into consideration inter-image correlation, intra-image correlation and inter-channel correlation. The approach starts with joint modeling of the entire image set in the gradient domain, which supports simultaneous representation of local smoothness, nonlocal self-similarity of every single image, and inter-image correlation. Then an efficient algorithm is proposed to solve the joint formulation, using a Split-Bregman-based technique. Furthermore, to support color image reconstruction, the proposed algorithm is extended by using the concept of group sparsity to explore inter-channel correlation. The effectiveness of the proposed approach is demonstrated with extensive experiments on both grayscale and color image sets. Results are also compared with recently proposed compressive sensing recovery algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.