Abstract

This paper presents joint transmit diversity selection (TDS) and relay selection (RS) algorithms based on discrete stochastic optimization for a multi-relay cooperative MIMO system. A two-phase, decode-and-forward (DF) network with a non-negligible direct path is considered where linear minimum mean square error (MMSE) receivers are used at all nodes. TDS and RS are performed jointly with continuous least squares channel estimation and no transmit preprocessing is required. RS removes relays from consideration by TDS and generates an optimized set from which TDS is made, improving the convergence, performance, complexity and energy consumption of the TDS process whilst maintaining low feedback requirements. The performance of the proposed schemes is evaluated via mean square error (MSE), bit-error rate (BER) and complexity comparisons. The results show that the proposed schemes outperform cooperative transmission with and without TDS in terms of diversity, MSE and BER, and match that of the optimum exhaustive solutions whilst making considerable complexity and energy savings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.