Abstract

We have applied the cross double-difference (CDD) method to simultaneously determine the microseismic event locations and five Thomsen parameters in vertically layered transversely isotropic media using data from a single vertical monitoring well. Different from the double-difference (DD) method, the CDD method uses the cross-traveltime difference between the S-wave arrival time of one event and the P-wave arrival time of another event. The CDD method can improve the accuracy of the absolute locations and maintain the accuracy of the relative locations because it contains more absolute information than the DD method. We calculate the arrival times of the qP, qSV, and SH waves with a horizontal slowness shooting algorithm. The sensitivities of the arrival times with respect to the five Thomsen parameters are derived using the slowness components. The derivations are analytical, without any weak anisotropic approximation. The input data include the cross-differential traveltimes and absolute arrival times, providing better constraints on the anisotropic parameters and event locations. The synthetic example indicates that the method can produce better event locations and anisotropic velocity model. We apply this method to the field data set acquired from a single vertical monitoring well during a hydraulic fracturing process. We further validate the anisotropic velocity model and microseismic event locations by comparing the modeled and observed waveforms. The observed S-wave splitting also supports the inverted anisotropic results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call