Abstract

The features of phase formation during the joint aluminothermic reduction of titanium, niobium, tantalum, vanadium from their oxides using methods of thermodynamic modeling, differential thermal and X-ray phase analysis were studied. Computer thermodynamic modeling made it possible to predict the optimal temperature conditions in the metallothermic process, composition and ratio of reagents in the charge, behavior of elements and sequence of phase formation. Thermodynamic calculations were supplemented by differential thermal studies using the combined scanning calorimetry method to identify the kinetic and thermochemical components of the process. An analysis of theoretical and experimental data allowed us to establish that the interaction of aluminum with titanium dioxide proceeds through the stage of titanium monoxide formation and features by the formation of TixAly intermetallic compounds of various compositions (TiAl3, TiAl, Ti2Al) depending on the Al and TiO2 ratio in the charge. When titanium dioxide is partially replaced by niobium, tantalum and vanadium oxides, the metallothermic process during interactions in the Al–TiO2–Nb2O5, Al–TiO2–Ta2O5 and Al–TiO2–V2O5 systems has a similar nature, enters the active phase once liquid aluminum appears, is accompanied by exothermic effects and features by the priority formation of titanium aluminides and binary and ternary intermetallic aluminum compounds with Group 5 rare refractory metals – AlNb3, Al3Nb, Al3Ta, Al3(Ti1–х, Taх), Al3(Ti0,8V0,2). The joint conversion of titanium dioxide and rare refractory metal pentoxides during the reduction process is carried out through sequential and parallel stages of the formation of simple and complex element oxides with low oxidation states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.