Abstract
In 2010, the concept of data lake emerged as an alternative to data warehouses for big data management. Data lakes follow a schema-on-read approach to provide rich and flexible analyses. However, although trendy in both the industry and academia, the concept of data lake is still maturing, and there are still few methodological approaches to data lake design. Thus, we introduce a new approach to design a data lake and propose an extensive metadata system to activate richer features than those usually supported in data lake approaches. We implement our approach in the AUDAL data lake, where we jointly exploit both textual documents and tabular data, in contrast with structured and/or semi-structured data typically processed in data lakes from the literature. Furthermore, we also innovate by leveraging metadata to activate both data retrieval and content analysis, including Text-OLAP and SQL querying. Finally, we show the feasibility of our approach using a real-word use case on the one hand, and a benchmark on the other hand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.