Abstract

BackgroundAdherence and CD4 cell count change measure the progression of the disease in HIV patients after the commencement of HAART. Lack of information about associated factors on adherence to HAART and CD4 cell count reduction is a challenge for the improvement of cells in HIV positive adults. The main objective of adopting joint modeling was to compare separate and joint models of longitudinal repeated measures in identifying long-term predictors of the two longitudinal outcomes: CD4 cell count and adherence to HAART.MethodsA longitudinal retrospective cohort study was conducted to examine the joint predictors of CD4 cell count change and adherence to HAART among HIV adult patients enrolled in the first 10 months of the year 2008 and followed-up to June 2012. Joint model was employed to determine joint predictors of two longitudinal response variables over time. Furthermore, the generalized linear mixed effect model had been used for specification of the marginal distribution, conditional to correlated random effect.ResultsA total of 792 adult HIV patients were studied to analyze the longitudinal joint model study. The result from this investigation revealed that age, weight, baseline CD4 cell count, ownership of cell phone, visiting times, marital status, residence area and level of disclosure of the disease to family members had significantly affected both outcomes. From the two-way interactions, time * owner of cell phone, time * sex, age * sex, age * level of education as well as time * level of education were significant for CD4 cell count change in the longitudinal data analysis. The multivariate joint model with linear predictor indicates that CD4 cell count change was positively correlated (p ≤ 0.0001) with adherence to HAART. Hence, as adherence to HAART increased, CD4 cell count also increased; and those patients who had significant CD4 cell count change at each visiting time had been encouraged to be good adherents.ConclusionJoint model analysis was more parsimonious as compared to separate analysis, as it reduces type I error and subject-specific analysis improved its model fit. The joint model operates multivariate analysis simultaneously; and it has great power in parameter estimation. Developing joint model helps validate the observed correlation between the outcomes that have emerged from the association of intercepts. There should be a special attention and intervention for HIV positive adults, especially for those who had poor adherence and with low CD4 cell count change. The intervention may be important for pre-treatment counseling and awareness creation. The study also identified a group of patients who were with maximum risk of CD4 cell count change. It is suggested that this group of patients needs high intervention for counseling.

Highlights

  • Adherence and classification determinant four (CD4) cell count change measure the progression of the disease in human immune deficiency virus (HIV) patients after the commencement of highly active antiretroviral therapy (HAART)

  • Of all the patients studied 50.6% were females, 40.1% were living in rural area, 55.2% were living without partners, 52.7% did not disclose the disease to family members living together and only 68.2% had good adherence in the first month treatment

  • The analysis revealed that the rate of change of CD4 cell count for patients without ownership of cell phone was 2.9% less as compared to patients with ownership of cell phone [Adjusted rate ratio (ARR) = 0.0290, 95% confidence interval (CI) (0.0172, 0.0870); p < 0.0001]

Read more

Summary

Introduction

Adherence and CD4 cell count change measure the progression of the disease in HIV patients after the commencement of HAART. Sub-Saharan Africa has the most serious HIV and AIDs epidemic in the world. The 2013 report indicates that, in sub-Saharan African countries, the prevalence rate among both female and male sex workers was still high (13%) [1]. The HIV prevalence shows a decreasing rate, still it bears a significant proportion of the epidemic burden as compared to the national and worldwide encumbrance [4]. HIV affects the CD4 cell count in the human body, so it can be employed to make appropriate decisions for the initiation of HAART and proper management of the progression of the infection [5, 6]. Patients’ CD4 cell count should recover/ rebound/at least to the lower limit of the CD4 cell count for the general healthy adult population (500 cells/mm3), which, otherwise, can be an indication of immunologic failure [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call