Abstract

The lack of personalized solutions for managing the demand of joint leisure trips in cities in real time hinders the optimization of transportation system operations. Joint leisure activities can account for up to 60% of trips in cities and unlike fixed trips (i.e., trips to work where the arrival time and the trip destination are predefined), leisure activities offer more optimization flexibility since the activity destination and the arrival times of individuals can vary.To address this problem, a perceived utility model derived from non-traditional data such as smartphones/social media for representing users’ willingness to travel a certain distance for participating in leisure activities at different times of day is presented. Then, a stochastic annealing search method for addressing the exponential complexity optimization problem is introduced. The stochastic annealing method suggests the preferred location of a joint leisure activity and the arrival times of individuals based on the users’ preferences derived from the perceived utility model. Test-case implementations of the approach used 14-month social media data from London and showcased an increase of up to 3 times at individuals’ satisfaction while the computational complexity is reduced to almost linear time serving the real-time implementation requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.