Abstract
Multimodal Magnetic Resonance Imaging (MRI) can provide valuable complementary information and substantially enhance the performance of brain tumor segmentation. However, it is common for certain modalities to be absent or missing during clinical diagnosis, which can significantly impair segmentation techniques that rely on complete modalities. Current advanced methods attempt to address this challenge by developing shared feature representations via modal fusion to handle different missing modality situations. Considering the importance of missing modality information in multimodal segmentation, this paper utilize a feature reconstruction method to recover the missing information, and proposes a joint learning-based feature reconstruction and enhancement method for incomplete modality brain tumor segmentation. The method leverages an information learning mechanism to transfer information from the complete modality to a single modality, enabling it to obtain complete brain tumor information, even without the support of other modalities. Additionally, the method incorporates a module for reconstructing missing modality features, which recovers fused features of the absent modality through utilizing the abundant potential information obtained from the available modalities. Furthermore, the feature enhancement mechanism improves shared feature representation by utilizing the information obtained from the missing modalities that have been reconstructed. These processes enable the method to obtain more comprehensive information regarding brain tumors in various missing modality circumstances, thereby enhancing the model’s robustness. The performance of the proposed model was evaluated on BraTS datasets and compared with other deep learning algorithms using Dice similarity scores. On the BraTS2018 dataset, the proposed algorithm achieved a Dice similarity score of 86.28%, 77.02%, and 59.64% for whole tumors, tumor cores, and enhanced tumors, respectively. These results demonstrate the superiority of our framework over state-of-the-art methods in missing modalities situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.