Abstract

We introduce a trainable coded modulation scheme that enables joint optimization of the bit-wise mutual information (BMI) through probabilistic shaping, geometric shaping, bit labeling, and demapping for a specific channel model and for a wide range of signal-to-noise ratios (SNRs). Compared to probabilistic amplitude shaping (PAS), the proposed approach is not restricted to symmetric probability distributions, can be optimized for any channel model, and works with any code rate k/m, m being the number of bits per channel use and k an integer within the range from 1 to m-1. The proposed scheme enables learning of a continuum of constellation geometries and probability distributions determined by the SNR. Additionally, the PAS architecture with Maxwell-Boltzmann (MB) as shaping distribution was extended with a neural network (NN) that controls the MB shaping of a quadrature amplitude modulation (QAM) constellation according to the SNR, enabling learning of a continuum of MB distributions for QAM. Simulations were performed to benchmark the performance of the proposed joint probabilistic and geometric shaping scheme on additive white Gaussian noise (AWGN) and mismatched Rayleigh block fading (RBF) channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.