Abstract
A surgical robot for spine surgery has recently been developed. The objective is to assess the joint kinematics of the surgeon during spine surgery. We enrolled 18 spine surgeons, who each performed pedicle screw placement, and used an optoelectronic motion analysis system. Using three-dimensional (3D) motion images, distance changes in five joints and angle changes in six joints were calculated during surgery. Distance fluctuations increased gradually from the proximal to the distal joint. Angle fluctuations were largest at the distal point but did not gradually increase, and the elbow showed the second largest fluctuation. Changes along the X axis were larger than those of the Y and Z axes. The distances gradually increased from proximal portions of the body to the hand. In angle changes, the elbow was most dynamic during pedicle screw placement. The surgeons' whole joints carry out a harmonic role during lumbar pedicle screw placement. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The international journal of medical robotics + computer assisted surgery : MRCAS
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.