Abstract

AbstractWe present a method for joint inversion of teleseismic and ambient noise Rayleigh wave data for phase velocity maps from 18 to 50 s period. We adapt the two‐plane wave method for teleseismic data to include ambient noise phase data. We apply the method to data from Iceland's ICEMELT and HOTSPOT arrays. Checkerboard tests show that the joint inversion improves phase velocity model recovery over methods that use the data sets independently, particularly at 18 s period. The addition of ambient noise data also extends resolution to shallower depths and shorter periods in comparison to previous teleseismic results beneath Iceland. We show there are significant differences in the phase velocity maps from the joint approach in comparison to other approaches, for instance, using only teleseismic data, only ambient noise data, or the mean of the two. The difference in phase velocities in turn affects the resulting shear velocity models. The advantage of the joint inversion is that it produces a single phase velocity map that satisfies both data sets simultaneously. Our phase velocity maps show a transition from low velocities centered beneath the main volcanic centers in Iceland at 18–25 s period, primarily crustal depths, to a low‐velocity region that traces the rift zones from the Reykjanes Ridge in the south to the Kolbeinsey Ridge in the north at 29–50 s period, greater depths. These results are consistent with previous studies, although with an extended and improved region of resolution, which extends further into the Atlantic and Arctic Ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.