Abstract
The inversion of magnetic data is inherently nonunique with respect to the distance between the source and observation locations. This manifests itself as an ambiguity in the source depth when surface data are inverted and as an ambiguity in the distance between the source and boreholes if borehole data are inverted. Joint inversion of surface and borehole data can help to reduce this nonuniqueness. To achieve this, we develop an algorithm for inverting data sets that have arbitrary observation locations in boreholes and above the surface. The algorithm depends upon weighting functions that counteract the geometric decay of magnetic kernels with distance from the observer. We apply these weighting functions to the inversion of three‐component magnetic data collected in boreholes and then to the joint inversion of surface and borehole data. Both synthetic and field data sets are used to illustrate the new inversion algorithm. When borehole data are inverted directly, three‐component data are far more usefu...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.