Abstract
Breakup of the North Atlantic during the early tertiary was accompanied by widespread and massive magmatism, resulting in the coverage of large areas of the North Atlantic with flood basalts. These flood basalts hamper seismic investigations of underlying sequences and thus the understanding of the rifting, subsidence and evolution of the margin which, in turn, increases the risk for hydrocarbon exploration. In this paper we present a methodology for the simultaneous joint inversion of diverse geophysical datasets, i.e. free air gravity and magnetotelluric soundings (MT) using seismic a priori constraints. The attraction of the joint inversion approach is that different geophysical measurements are sensitive to different properties of the sub-surface, so through joint inversion we significantly reduce the null space and produce a single model that fits all datasets within a predefined tolerance. Using sensitivity analysis of synthetic data, we show how each data set contains complementary important information of the supra and sub-basalt structure. While separate inversions of individual datasets fail to image through the basalt layer, our joint inversion approach leads to a much improved sub-basalt structure. Application of the joint inversion algorithm to satellite gravity data and MT data acquired on the FLARE10 seismic line south west of Faroe islands supports the existence of a 1 km to 2 km thick low velocity region that might be indicative of the existence of a sedimentary basin underneath the basalt layer. Though in this paper we demonstrate the use of joint inversion on a sub-basalt target, we believe it has wider applicability to other areas where conventional seismic imaging fails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.