Abstract

It is well known that both gravity and magnetolluric (MT) methods can be used for the depth-to-basement estimation due to the density and conductivity contrast between the sedimentary basin and the underlaid basement rocks. In this case, the primary targets for both methods are the interface between the basement and sedimenary rocks as well as the physical properties of the rocks (density and conductivity). The solution of this inverse problem is typically nonunique and unstable, especially for gravity inversion. In order to overcome this difficulty and provide a more robust solution, we have developed a method of joint inversion to recover both the depth to the basement and the physical properties of the sediments and basement using gravity and MT data simultaneously. The joint inversion algorithm is based on the regularized conjugate gradient method. To speed up the inversion, we use an effective forward modeling method based on the surface Cauchy-type integrals for the gravity field and the surface integral equation representations for the MT field, respectively. We demonstrate the effectiveness of the developed method using several realistic model studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.