Abstract
This paper studies a reliable joint inventory-location problem that optimizes facility locations, customer allocations, and inventory management decisions when facilities are subject to disruption risks (e.g., due to natural or man-made hazards). When a facility fails, its customers may be reassigned to other operational facilities in order to avoid the high penalty costs associated with losing service. We propose an integer programming model that minimizes the sum of facility construction costs, expected inventory holding costs and expected customer costs under normal and failure scenarios. We develop a Lagrangian relaxation solution framework for this problem, including a polynomial-time exact algorithm for the relaxed nonlinear subproblems. Numerical experiment results show that this proposed model is capable of providing a near-optimum solution within a short computation time. Managerial insights on the optimal facility deployment, inventory control strategies, and the corresponding cost constitutions are drawn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.