Abstract

The integrated interpretation of data from various technologies has the potential to obtain a more accurate estimate of subterranean earth properties. In this paper, we implement the joint interpretation of geological and geophysical data for mineral exploration in the northeastern region of Inner Mongolia, China. The joint application of several methodologies reduces the exploration risk. We first determined an approximate and large potential area for mineral exploration with geological data and magnetic data interpretation in Gaoerqi. Results from the two types of data analysis show that the ore deposit strikes roughly east in the northern part of the Gaoerqi mining area. Next, we employed the audio-magnetotelluric (AMT) method to study the subterranean electrical resistivity distribution and divide the earth into four layers. Inverted resistivity sections from the AMT data illustrate that the ore deposits are likely developed in the low-resistivity zone of the survey area from the land surface to 300-m depth. Finally, the high-resolution borehole-to-surface electrical resistivity tomography (ERT) method was employed for further investigation of the location and attitude of the potential ore deposits. Inverted resistivity sections from the ERT data show that two prospective areas for mineral exploration were observed in the west of the survey area and that the eastern portion of the survey area warrants further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call