Abstract

Local feature based image representation has been widely used for image classification in recent years. Although this strategy has been proven very effective, the image representation and classification processes are relatively independent. This means the image classification performance may be hindered by the representation efficiency. To jointly consider the image representation and classification in an unified framework, in this paper, we propose a novel algorithm by combining image representation and classification in the random semantic spaces. First, we encode local features with the sparse coding technique and use the encoding parameters for raw image representation. These image representations are then randomly selected to generate the random semantic spaces and images are then mapped to these random semantic spaces by classifier training. The mapped semantic representation is then used as the final image representation. In this way, we are able to jointly consider the image representation and classification in order to achieve better performances. We evaluate the performances of the proposed method on several public image datasets and experimental results prove the proposed method׳s effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.