Abstract
This paper proposes a new framework for joint image registration and high-resolution (HR) image reconstruction from multiple low-resolution (LR) observations with zooming motion. Conventional super-resolution (SR) methods typically formulate the SR problem as a two-stage process, namely, image registration followed by HR reconstruction. An important step in image SR is the effective estimation of motion parameters. However, the registration algorithms in these two-stage processes experience various degrees of errors. This could degrade the quality of subsequent HR reconstruction. In view of this, this paper presents a new approach that performs joint image registration and SR reconstruction. The proposed iterative SR framework enables the HR image and motion parameters to be estimated simultaneously and progressively. This could increase the potential SR improvement as more accurate estimates of motion parameters could be obtained iteratively. Experimental results show that the proposed method is effective in performing image registration and SR for simulated and real-life images and videos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.