Abstract
Image reconstruction of metabolic images from hyperpolarized 13 C multi-echo data acquisition is sensitive to susceptibility-induced phase offsets, which are particularly challenging in the heart. A model-based framework for joint estimation of metabolite images and field map from echo shift-encoded data is proposed. Using simulations, it is demonstrated that correction of signal spilling due to incorrect decomposition of metabolites and geometrical distortions over a wide range of off-resonance gradients is possible. In vivo feasibility is illustrated using hyperpolarized [1-13 C]pyruvate in the pig heart. The model-based reconstruction for multi-echo, multicoil data was implemented as a nonconvex minimization problem jointly optimizing for metabolic images and B0 . A comprehensive simulation framework for echo shift-encoded hyperpolarized [1-13 C]pyruvate imaging was developed and applied to assess reconstruction performance and distortion correction of the proposed method. In vivo data were obtained in four pigs using hyperpolarized [1-13 C]pyruvate on a clinical 3T MR system with a six-channel receiver coil. Dynamic images were acquired during suspended ventilation using cardiac-triggered multi-echo single-shot echo-planar imaging in short-axis orientation. Simulations revealed that off-resonance gradients up to ±0.26ppm/pixel can be corrected for with reduced signal spilling and geometrical distortions yielding an accuracy of ≥90% in terms of Dice similarity index. In vivo, improved geometrical consistency (10% Dice improvement) compared to image reconstruction without field map correction and with reference to anatomical data was achieved. Joint image and field map estimation allows addressing off-resonance-induced geometrical distortions and metabolite spilling in hyperpolarized 13 C metabolic imaging of the heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.