Abstract

This work presents an ensemble-based workflow to simultaneously assimilate multiple types of field data in a proper and consistent manner. The aim of using multiple field datasets is to improve the reliability of estimated reservoir models and avoid the underestimation of uncertainties. The proposed framework is based on an integrated history matching workflow, in which reservoir models are conditioned simultaneously on production, tracer and 4D seismic data with the help of three advanced techniques: adaptive localization (for better uncertainty quantification), weight adjustment (for balancing the influence of different types of field data), and sparse data representation (for handling big datasets). The integrated workflow is successfully implemented and tested in a 3D benchmark case with a set of comparison studies (with and without tracer data). The findings of this study indicate that joint history matching using production, tracer and 4D seismic data results in better estimated reservoir models and improved forecast performance. Moreover, the integrated workflow is flexible, and can be extended to incorporate more types of field data for further performance improvement. As such, the findings of this study can help to achieve a better understanding of the impacts of multiple datasets on history matching performance, and the proposed integrated workflow could serve as a useful tool for real field case studies in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.