Abstract

We present a halo mass function accurate over the full relevant Hu-Sawicki $f(R)$ parameter space based on spherical collapse calculations and calibrated to a suite of modified gravity $N$-body simulations that include massive neutrinos. We investigate the ability of current and forthcoming galaxy cluster observations to detect deviations from general relativity while constraining the total neutrino mass and including systematic uncertainties. Our results indicate that the degeneracy between massive neutrino and modify gravity effects is a limiting factor for the current searches for new gravitational physics with clusters of galaxies, but future surveys will be able to break the degeneracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.