Abstract
The performance of cloud-based small cell networks (C-SCNs) relies highly on a capacity-limited fronthaul, which degrade quality of service when it is saturated. Coded caching is a promising approach to addressing these challenges, as it provides abundant opportunities for fronthaul multicast and cooperative transmissions. This paper investigates cache-enabled C-SCNs, in which small-cell base stations (SBSs) are connected to the central processor via fronthaul, and can prefetch popular contents by applying maximum distance separable (MDS) codes. To fully capture the benefits of fronthaul multicast and cooperative transmissions, an MDS codes-aided transmission scheme is first proposed. We formulate the problem to minimize the content delivery latency by jointly optimizing fronthaul bandwidth allocation, SBS clustering, and beamforming. To efficiently solve the resulting nonlinear integer programming problem, we propose a penalty-based design by leveraging variational reformulations of binary constraints. To improve the solution of the penalty-based design, a greedy SBS clustering design is also developed. Furthermore, closed-form characterization of the optimal solution is obtained, through which the benefits of MDS codes can be quantified. The simulation results are given to demonstrate the significant benefits of the proposed MDS codes-aided transmission scheme.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.